Simulation Framework for a 3-D High-Resolution Imaging Radar at 300 GHz with a Scattering Model Based on Rendering Techniques


We present a simulation framework for a 3-D high-resolution imaging radar at 300 GHz with mechanical scanning. This tool allows us to reproduce the imaging capabilities of the radar in different setups and with different targets. The simulations are based on a ray-tracing approximation combined with a bidirectional reflectance distribution function (BRDF) model for the scattering of rough surfaces. Moreover, we present a novel approach to estimate the scattering parameters of the BRDF model for different types of targets from the combination of the radar data and information obtained from an infrared structure light sensor. This new framework will serve as a baseline for the design of future radar multistatic configurations and to generate synthetic data to train automatic target recognition algorithms.

IEEE Transactions on Terahertz Science and Technology